All Roads Crash Analysis
User’s Manual

For the
Florida Dept. of Transportation Traffic Safety Web Portal

Prepared by:
Enterprise 24 x 7, Inc.

In cooperation with
Safety Office
State of Florida Department of Transportation
605 Suwanee Street, M.S. 53
Tallahassee, Florida 32399-0450

April 2014
TABLE OF CONTENTS

1. FLORIDA TRAFFIC SAFETY PORTAL ... 5
 1.1 Portal Overview .. 5
 1.2 System Requirements .. 5
 1.2.1 Browser Requirements .. 5
 1.2.2 Required Applications to View Documents ... 6
 1.3 System Management .. 6
 1.3.1 User Accounts ... 6
 1.4 URLs .. 7
 1.4.1 Public Users .. 7
 1.4.2 Internal FDOT staff only ... 7
 1.5 Webpage Structure and Navigation ... 9
 1.6 Main Web Pages .. 10
 1.6.1 ARCA Login ... 10
 1.6.2 Homepage Welcome Banner – After Login ... 12
 1.6.3 Homepage Welcome Banner – After Logout or System Time Out 12

Generic Features on the Homepage .. 15

2. THE ARCA SYSTEM .. 22
 2.1 Prerequisites .. 22
 2.2 ARCA - All Roads Crash Analysis ... 22
 2.3 ARCA Main Webpage .. 23
 2.3.1 ARCA Main Webpage Navigation Menu ... 24
 2.3.2 ARCA Main Webpage - Papers and Reports Link 24
 2.3.3 High Crash Locations .. 25
 2.3.4 SAFETEA-LU Report Analysis .. 63

3. SSOGIS SYSTEM ... 64
 3.1 Components .. 66
 3.1.1 Navigation Tool ... 66
 3.1.2 SSOGis Application Toolbar ... 67
 3.1.3 Map .. 69
 3.1.4 Help Viewer ... 69
 3.1.5 Data ... 72
4. PROVIDE FEEDBACK ABOUT THIS GUIDE

4.1 FEEDBACK FEATURE

4.1.1 Instructions

5. APPENDIX 1: TABLE OF COUNTIES

Table of Figures

Figure 1 Portal Homepage - Full View ...8
Figure 2 Portal Homepage - Main Web Pages with ARCA Login Highlighted10
Figure 3 Homepage Portal Login Subpage ..11
Figure 4 ARCA Main Webpage View for Non-Authorized User13
Figure 5 ARCA Main Webpage View for Authorized User14
Figure 6 Portal Homepage – Generic Features ..15
Figure 7 ARCA Main Webpage ..23
Figure 8 ARCA Main Webpage - Papers and Reports Link25
Figure 9 ARCA High Crash Locations Submenu ..26
Figure 10 High Crash Locations - Sample Search Results27
Figure 11 High Crash Locations - Segment Results sample29
Figure 12 High Crash Locations - Intersection Results sample31
Figure 13 High Crash Locations - HRRR Results sample33
Figure 14 Location Detail Subpage ...35
Figure 15 High Crash Location Detail Subpage - Enlarged36
Figure 16 SSOGis Display from Map Location Link on Location Detail subpage58
Figure 17 SSOGis - Result Using a Single High Crash Location Map ID link60
Figure 18 SSOGis - Result of Map All Locations ...61
Figure 19 High Crash Locations - Export List to Excel ..62
Figure 20 Export List to Excel - Sample Spreadsheet ..63
Figure 22 SSOGis System Overview ..65
Figure 23 SSOGis Application Toolbar Legend ...68
Figure 24 SSOGis Help – Layers Tab ...70
Figure 25 SSOGis Help – Legend Tab ..71
Figure 26 Example of single Map ID Crash Location Data in SSOGis73
Figure 27 Data – Full Extent View...74
Figure 27 Data – Fully-Zoomed View ..75
Figure 28 Feedback Link...77

Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Draft 0.0</td>
<td>Esra Erimez, Kathryn Waters, Marco Cristofari</td>
<td>Original Draft.</td>
</tr>
<tr>
<td>10/09/2013</td>
<td>Draft 1.0</td>
<td>C. Walters</td>
<td>Initial draft</td>
</tr>
<tr>
<td>10/17/2013</td>
<td>Draft 1.1</td>
<td>K. Waters</td>
<td>QA Review</td>
</tr>
<tr>
<td>10/17/2013</td>
<td>Draft 1.2</td>
<td>C. Walters</td>
<td>Updated images for new phone numbers</td>
</tr>
<tr>
<td>10/18/2013</td>
<td>Draft 1.3</td>
<td>K. Waters</td>
<td>Final QA review</td>
</tr>
<tr>
<td>10/22/2013</td>
<td>Draft 1.4</td>
<td>C. Walters</td>
<td>Corrected wording; centered headings and link footers</td>
</tr>
<tr>
<td>04/09/2014</td>
<td></td>
<td>Joseph Santos, Shaun Davis</td>
<td>Final DOT Review</td>
</tr>
<tr>
<td>04/14/2014</td>
<td>v1.0</td>
<td>J. Nelms</td>
<td>Initial version (incorporated DOT comments and standardized styling).</td>
</tr>
</tbody>
</table>
1. FLORIDA TRAFFIC SAFETY PORTAL

1.1 Portal Overview

The Florida Traffic Safety Portal is designed to serve as a gateway to accessing pertinent traffic safety data, information, and tools for the Florida traffic safety community. The portal includes both public and restricted areas. The public areas are accessible without the need for an access account and serve as a public information portal. The restricted areas require a Florida Department of Transportation (FDOT) login and password.

This document will highlight the navigational components related to accessing the ARCA (All Roads Crash Analysis) application and focus primarily on how to use it through the portal. An overall Navigation Guide for the portal is available on the Florida Traffic Safety Portal Homepage by clicking on the HELP button on the Welcome banner.

![FDOT Florida Department of Transportation Logo]

The ARCA system access is restricted to authorized FDOT users and it requires a User ID and password to log into the system. This document will explain how to request an access account to become an authorized user. The ARCA application functionality available to an authorized user will be covered in detail in Section 2.

1.2 System Requirements

Below are the recommended system and software requirements for the Florida Traffic Safety Portal.

1.2.1 Browser Requirements

Web Browsers:
- Internet Explorer 7.0 or higher.
• Mozilla Firefox 8.0 or higher.
• The minimum display resolution is 1024 x 768. This is also the recommended resolution.

Browser Settings:
• Enable JavaScript.
• Enable File Download prompt

1.2.2 Required Applications to View Documents
• Adobe Acrobat Reader (download link available under Downloads section)
• Microsoft Excel
• Microsoft Word

1.3 System Management
1.3.1 User Accounts
The user is required to login to access the ARCA application and its associated subpages. An authorized user can access ARCA from either the Intranet or the Internet URLs.

If the user does not currently have access to ARCA, they may request to be added for access. If the user needs to access the ARCA application from the Internet, they must submit an Access Request Form. The current contact for access authorization is:

FDOT Safety Office
605 Suwannee Street, M.S. 53
Tallahassee FL 32399-0450

Phone: (850) 414-3100
Fax: (850) 414-4221

Email: co-tsw@dot.state.fl.us

For the ARCA system, the user will be assigned edit permissions based on their respective district, county and jurisdiction affiliations.
The user may also be granted posting privileges for individual pages.

1.4 URLs

1.4.1 Public Users

Internet: http://www2.dot.state.fl.us/TrafficSafetyWebPortal

1.4.2 Internal FDOT staff only

(Note: The user must be logged into the FDOT network to access the Intranet pages.)

Intranet: http://webapp02.dot.state.fl.us/TrafficSafetyWebPortalFDOT/
Figure 1 Portal Homepage - Full View
1.5 Webpage Structure and Navigation

The Florida Traffic Safety Portal consists of a login feature, several main web pages, quick links to additional sites and data (e.g., policies, procedures, and disclaimers), search features, and an area where users provide feedback on the portal and its contents.

The main web pages are accessible via a standard menu panel displayed on the left side of the screen. If a main page contains multiple subpages, the links to the subpages are listed on the main page and a brief description is provided for each subpage. Clicking on a subpage link will open a new page. Each subpage may further include multiple subpages. The user may click the browser’s Back button to return to the previous page or click Home on the subpage to return to the portal’s Homepage. Wherever applicable, buttons are provided on a floating panel so they are easily reachable within the current screen view.
1.6 Main Web Pages

The left panel in the portal is the navigation menu. The portal provides links to each of the ten main web pages. This document will focus primarily on the ARCA application functionality only (see the red rectangle below). To log into the Portal, click **LOGIN**.

1.6.1 ARCA Login

![Portal Homepage - Main Web Pages with ARCA Login Highlighted](image)

Figure 2 Portal Homepage - Main Web Pages with ARCA Login Highlighted
The user will be redirected to the following Login subpage. If the user is an authorized user, they can use this subpage to log into ARCA. Otherwise, they can use the subpage to request access.

Note: The user must be logged into the portal in order to use the ARCA application. The functionality in ARCA may be further restricted based on the permissions granted to their access account.
Authorized users will log in using their assigned Resource Access Control Facility (RACF) User ID and password and click on the Log In link just below the Password box. By hovering over the Password Requirements text the user can see the requirements for a valid password, if they would like to change their password. The user can communicate with the FDOT Service Desk or the Florida Traffic Safety Portal Administrator from this Login page. Please direct any questions or seek assistance by using the available links and following the instructions that best fit your needs.

1.6.2 Homepage Welcome Banner – After Login

After logging in, the welcome banner on the Florida Traffic Safety Portal will change to include the user’s User ID and the HELP button.

![FLORIDA TRAFFIC SAFETY PORTAL](image)

1.6.3 Homepage Welcome Banner – After Logout or System Time Out

The user’s session is terminated either by clicking LOGOUT to end the session or when the session times out (i.e., following 20 minutes of inactivity). Once the user’s logged-in session terminates, the welcome banner reverts back to the standard view (the user’s User ID is removed and only the LOGIN and HELP buttons remain), though the user can still navigate within the Traffic Safety Portal, but will not have access to restricted pages until they log in again. The system will return the user to the Traffic Safety Portal’s Homepage when the logged-in session terminates.

![FLORIDA TRAFFIC SAFETY PORTAL](image)

Access to the ARCA system is restricted to authorized personnel only and therefore requires the user to LOGIN to the portal. If the user does not login before clicking on the ARCA link on the portal’s Homepage, they will experience one of two outcomes depending on their status as an authorized user.
1.6.3.1 ARCA Main Webpage View for Non-Authorized User

Non-authorized users will see the screen display shown below. The user may contact the Florida Traffic Safety Portal Administrator to request permission be granted to access this webpage.

![ARCA Main Webpage View for Non-Authorized User](image-url)
1.6.3.2 ARCA Main Webpage View for Authorized User

An FDOT authorized user will see the initial ARCA Main Webpage displayed as shown below. Note the differences, shown in the red rectangles below, compared to non-authorized users.

![Figure 5 ARCA Main Webpage View for Authorized User](image)

Section 1407 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (Public Law 109-59) amended Section 149 if Title 23, United States Code, to create a new Highway Safety Improvement Program (HSIP) as one of the Federal Highway Administration's "core" programs. The purpose of the HSIP is to reduce traffic fatalities and serious injuries on public roads.

As part of the new HSIP, states are required to submit an annual report describing not less than 5 percent of their highway locations exhibiting the most severe safety needs. The intent of this provision is to raise public awareness of the highway safety needs and challenges in the states.

In addition to listing the locations, the states' reports are to include:

- Potential remedies to the hazardous locations identified;
- Estimated costs of the remedies; and
- Impediments to implementation of the remedies other than costs.

Protection from Discovery and Admission into Evidence - (Under 23 U.S.C. §149) Information collected or compiled for any purpose directly relating to this report shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the report.

Additional information, including the specific legislative requirements, can be found in the guidance provided by the Federal Highway Administration. The updated web links for both the FHWA general guidance and the latest years of FHWA Florida Five Percent Reports are provided in the Traffic Safety Portal in the section "Publications" and folder "Publications and Reports.

Access to edit ARCA records is restricted to authorized personnel only. Please direct all questions including system access to:
Generic Features on the Homepage

The portal includes several generic features, in the right side panel and bottom of the homepage, which allows the user to perform various functions on the website. Refer to the green labeled circles in the picture below. Some of these noted features will appear on all ten of the main pages of the portal; see the detailed explanation of each feature below.

![Portal Homepage – Generic Features](image)

Figure 6 Portal Homepage – Generic Features

A. **Search Portal.** Allows the user to search the entire Traffic Safety Portal, from *most* of the main web pages, by typing keywords into the Search Portal box and clicking on the Search (magnifying glass) icon 🔍.
a. A list of results is returned. The results may include web pages, html content, Microsoft WORD documents, EXCEL spreadsheets, etc. which contain any reference to the keywords entered in the Search.

b. The results are displayed 10 objects per page and include a paging feature, **Example:**

![Result Page Previous 1 2 3 4 Next](image)

which allows the user to page through, go to a specific page, use the “Next” button, or “Previous” button to navigate through the Search results list.

c. The user can click on the **Home** link, at any time to return to the Traffic Safety Portal’s Homepage.

d. Or, use the browser’s **Back** arrow button to back out page-by-page to the Portal’s Homepage.

B. Mailing List. Found on *most* of the main web pages, this feature allows a user to register to participate in the Florida Traffic Safety Portal mailing list.

a. Enter the user’s name in the “**Enter your name**” box.

b. Enter the user’s email address in the “**Enter your e-mail**” box.

c. Click the **Subscribe** button.

d. The following message will be displayed. Click the **OK** button or the **button** to close the message window.

![Message from webpage](image)

Thank you for your subscription. A request for confirmation has been emailed to you. You must confirm within the next 48 hours.

![Confirm subscription to Florida Traffic Safety Portal](image)

Please click the link below to confirm your subscription to the Florida Traffic Safety Portal mailing list:

Your subscription is not complete until you click the link to confirm. Your confirmation must be submitted within 48 hours from the time of your registration.

e. The user will receive an email confirmation.
f. Once the user clicks on the link provided in the confirmation email, they will be added to the mailing list.

g. If the user does not confirm within 48 hours the subscription request expires and they will not be added to the mailing list.

C. Quick Links. Provides links to a list of other traffic safety tools and organizations, such as the State Safety Office.
 a. Select one by clicking the desired link from the list.
 b. The selected link’s webpage will open in a separate window (or tab, depending on browser settings). The functionality of that webpage is not under the control of the Florida Traffic Safety Portal. The user will need to contact the administrator for the specific web site if they have questions or issues related to that site.
 c. The current Florida Traffic Safety Portal webpage will remain open, and active, in the background.
 d. Please check the Quick Links frequently as the content may change periodically.

D. Safety Office Policies, Procedures, Disclaimers & Credits. Located at the bottom of each of the main web pages on the Florida Traffic Safety Portal.
 a. By clicking on this link, the user is transferred to the Publications subpage with the Policies, Procedures, Disclaimers & Credits subsection highlighted and expanded for view.
 b. Use the browser’s Back arrow button to return to the previous page in focus.

E. Feedback. Located at the bottom of each page on the Florida Traffic Safety Portal.
Provides a means for the user to send feedback to the department by clicking on the link.

a. Once clicked, a form displays for the user to submit comments and/or questions.
 i. If the user is an internal FDOT user several fields are pre-populated based on
 the information listed in Active Directory.
 ii. If the user is a non-registered public user using the PRODUCTION
 Internet URL, all fields shown in the screenshot below will be blank unless
 entered manually by you.

 ![Feedback Form Screenshot]

 b. The user must enter comments or questions in the **Message** field before submitting
 the feedback.
 i. This is a required field.
 ii. If not entered before clicking on the **Submit** button, the following
 warning message is displayed. Click the **OK** button or the
 X button to close the message window.
iii. Enter feedback in the Message field, click on the **Submit** button and an email is sent to a group email account (*co-tsw@dot.state.fl.us*).

1. Note – the system will check for email address, as noted below, before sending the feedback email.

c. The system defaults to “No” for the “I would like to be contacted.” statement. If the user wishes to be contacted, they can select the “Yes” radio button and enter their email address before submitting the feedback.

![Warning message](image)

i. If “Yes” is selected without information in the **E-mail** field, the following warning message is displayed. Click the **OK** button or the **Submit** button to close the message window.

![Warning message](image)

ii. Enter the user’s email address into the **E-mail**: field, click on the **Submit** button and an email is sent to a group email account (*co-tsw@dot.state.fl.us*).

![Warning message](image)

d. The user can click the **Clear** button to reset the feedback form to its original display state.

e. Use the browser’s **Back** arrow button to abandon the Feedback process or when the
Feedback process is completed, to return to the previous page in focus.

f. The user may use any of the other navigational links available, if desired.

A Read More link appears below descriptive text in a section, or posted News article, etc., when clicked the user can read the full content of the post. This allows for more informational links to be displayed on the page while providing a means for the user to optionally read more detail, if needed.

When the user is transferred to a specific subpage to read the full content of the information, a Back link is available, which will return to the previous page in focus when clicked. Informational text usually includes the date it was posted. The text “Posted by” will be displayed, and optionally, when available, will include the poster’s name displayed as a link, example:

| Posted by Benjamin Jacobs |

When a poster’s name is displayed, the user may click on that link to send an email to the poster, if needed. A security message dialog box opens

![Internet Explorer Security Dialog Box](image)

Click Allow to proceed to create the email. The poster’s email address is pre-populated into the Microsoft Outlook message page. After the email is sent, the user returns to the previous page. If the user clicks on Don’t allow or close the dialog box by clicking the X button, no email is sent and the user is returned to the previous page.
As the user scrolls down a webpage, links are available within sections to re-set the webpage display to the top of the page. By clicking on a link in the section in focus, the webpage is re-displayed from the top. This is particularly useful on pages with numerous articles or links to other pages within a subpage.

Links provided to web pages outside the control of the Florida Traffic Safety Portal will display the information for that link in a separate window, while keeping the current page of the portal open and in focus.
2. The ARCA System

2.1 Prerequisites

This section assumes that the user has successfully logged into the portal as an authorized user who accessed the **ARCA (All Roads Crash Analysis)** application from the Florida Traffic Safety Portal’s Homepage ARCA webpage link.

All ARCA application functionality available will be documented. However, the user’s access to a certain feature may be restricted based upon the permissions granted to their access account and whether the user is logged into the portal at the time.

2.2 ARCA - All Roads Crash Analysis

In 2005, Section 1401 of the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users (Public Law 109-59) amended Section 148 of Title 23, United States Code, to create a new Highway Safety Improvement Program (HSIP) as one of the Federal Highway Administration's (FHA) "core" programs. The purpose of the HSIP is to reduce traffic fatalities and serious injuries on public roads.

As part of the revised HSIP, states are required to submit an annual report describing not less than 5 percent of their highway locations exhibiting the most severe safety needs. The intent of this provision is to raise public awareness of the highway safety needs and challenges in the states.

In addition to listing the locations, the states' reports are to include:

- Potential remedies to the hazardous locations identified;
- Estimated costs of the remedies; and
- Impediments to implementation of the remedies other than costs.

In 2012, the US Department of Transportation implemented new legislation (P.L. 122-141, the Moving Ahead for Progress in the 21st Century) known as MAP-21, which changed elements previously collected and reported as part of the state’s HSIP annual report submissions. The FHA requirement to report and identify remediation actions, impediments and projected costs for remediation on the segments and intersections that represented the state’s top 5 percent high crash areas was modified to require the reporting of those roadway segments and intersections where crash rates increased from prior years. As a result of this change, the data represented after 2012 may not have been generated using the same analysis routines used prior to that point in time.
2.3 ARCA Main Webpage

Figure 7 ARCA Main Webpage
2.3.1 ARCA Main Webpage Navigation Menu

Authorized users will see the navigation menu in the left panel change to an ARCA application specific submenu, refer to Figure 7 above. It is used to navigate to the ARCA subpages to access the functional components within the ARCA application. Access to these processes is based on the permissions granted to the user’s access account. Click the Home button to return to the Traffic Safety Portal’s Homepage.

2.3.2 ARCA Main Webpage - Papers and Reports Link

If the user clicks on the Papers and Reports on the ARCA main page (see Figure 7 above), they will be transferred to the Publications webpage with the Papers and Reports subpage in focus. Use the browser’s Back arrow to return to the previous page.
2.3.3 High Crash Locations

This subpage has multiple links available, highlighted below in the left panel navigation menu, which are displayed when the user clicks on the High Crash Locations link from the ARCA main webpage menu. By clicking Home, they return to the Traffic Safety Portal’s Homepage.
The remaining features on the left panel navigation menu and High Crash Locations search options within the middle panel are described in detail below.

2.3.3.1 High Crash Locations Subpage Features

Figure 10, below shows a sample of the results from the underlying query for High Crash Locations – Intersection results. Various features on this subpage are discussed below and will reference this figure. Examples of each type of High Crash Locations reports are also provided in this section.
A Paging feature near the bottom of each High Crash Locations results list will allow the user to page to the First, Last, Previous, Next or to a specific page in the list. The contents of the display dynamically change as the user pages through the list of results.
A list of High Crash Locations is available by selecting criteria (see Criteria area noted in Figure 10) from the various dropdown boxes displayed in the middle panel. Note the column headings displayed in the results vary based on the Type selection. Examples of each are demonstrated in the next several pages.

To refine the user’s search select the limiting criteria from the dropdown lists:

- **Year**: Sets the Analysis Year for the Transparency Report. The Year dropdown list defaults to the most current year for which the report is available.

- **Type**: Sets the Report Type. The report types are “Segment”, “Intersection”, or “HRRR” (High Risk Rural Roads).

 - **Note**: If the user chooses “HRRR” as the Type, they must choose “All or “Local” in the Source dropdown list below for the “HRRR” query to run and post results correctly.

- **Source**: Allows the user to limit searches to a Data Source. The values are “State” for State Highway System (SHS), “Local” for Local Roads or “All” (default) to list both SHS and Local Roads for the analysis year.

- **District**: Allows the user to limit searches to a Florida DOT Managing District. The District dropdown list includes FDOT Districts 1 through 8 and “All” (default).

- **County**: Allows the user to limit searches to a single Florida County or all counties within the state or an individual district.
 - The user can select “All Counties” to view the results for all counties in the state if they selected “All” in the District dropdown list.
 - If a specific District is selected, the County dropdown lists only displays the Counties within the selected District, as well as “All Counties” which will include data for all counties in the selected District only.
In the results, the user can view a short description for a column of data by using the mouse to hover over the column header. The example below demonstrates the tooltip they see by hovering the mouse over the “Road Name” column.

There are three types of High Crash Locations reports available. An example of each type of report showing the column headings and a brief description of the data displayed in the following subsection.

2.3.3.2 High Crash Locations – Segment Results Sample

Columns Displayed:
- **Dist**: DOT Managing District.
RdwyID: Roadway ID.

Note: See the Appendix 1, [Table of Counties](#), for a cross-reference by County Number or County Name.

- **STATE**: 8-character code, based on the Department’s linear referencing scheme, identifies the part of the State Highway System (SHS) that contains the roadway segment. The first two digits are the numeric DOT code for County; the third, fourth, and fifth digits are the linear reference section for the SHS within the County, and the sixth, seventh, and eighth digits identify the subdivision of the primary section.

- **LOCAL**: 8-character code identifies the roadway in terms of the linear-referencing system used for the routing that is used for assignment of location and for analysis of the crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways that are not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County. For the roadways in the RCI, the third, fourth and fifth digits are the linear reference section for the State Highway System within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the County, for the route on which the segment falls.

Note: There may be multiple segments qualifying from the same route. Segments on the same route are differentiated by the mile-point range.

- **BMP**: Beginning Milepost. The milepost on the Roadway ID that identifies the exact point where the segment begins.

- **EMP**: Ending Milepost. The milepost on the Roadway ID that identifies the exact point where the segment ends.

- **Road Name**: Road name for the location.
 - For Source of **STATE**: The local name for the roadway on which the segment occurs, according to the map alias file at the Safety Office.
 - For Source of **LOCAL**: The road name comes from the Crash Locator Analysis Report (CLAR) application used during end of year analysis on local roads.

- **No. of Crashes**: The number of crashes that have occurred on that roadway segment during the years spanned by this analysis.

- **AADT**: Annual Average Daily Traffic. The average number of vehicles per day (annual average) traveling through the roadway segment. On local roads, this metric is calculated using a parcel-based travel demand modeling system.

- **Fatalities**: The total number of fatalities (Injury Severity code “5”) as a result of crashes related to the segment, for the years spanned by the analysis.
• **Injuries**: The total number of injuries (Injury Severity codes 2, 3, or 4) as a result of crashes related to the segment, for the years spanned by the analysis.

• **PDO**: Property Damage Only. The total number of crashes, related to the segment, for the years spanned by the analysis, for which no injuries were reported.

• **Blank Column Header**: Each data row will contain a hyperlink labeled either **Edit** or **View** depending on the user’s permissions (i.e., whether the user has permissions to edit the High Crash Locations data on this result row).

• **Map ID**: The number that identifies the segment on the accompanying map. It is composed of:
 - First character is determined by the value in **Source**: “S” (State) or “L” (Local).
 - Second character is determined by the value in **Type**: “I” (Intersection) or “S” (Segment).
 - Third character contains the District Number.
 - Fourth and Fifth characters contain the DOT County Number.
 - The Segment Sequence separated by a dash (-), forms the last part of the Map ID.

2.3.3.3 High Crash Locations – Intersection Results Sample

Columns Displayed:

- **Dist**: DOT Managing District.
- **RdwyID**: Roadway ID.

Note: See the Appendix 1, [Table of Counties](#), for a cross-reference by County Number or County Name.

- **STATE**: 8-character code, based on the Department’s linear referencing scheme, identifies the part of the State Highway System (SHS) that contains the intersection. The first two digits are the numeric DOT code for County; the third, fourth, and fifth digits are the linear
reference section for the SHS within the County, and the sixth, seventh, and eighth digits identify the subdivision of the primary section.

- **LOCAL**: 8-character code identifies the roadway on which the intersection falls, in terms of the linear-referencing system used for the routing that is used for assignment of location and for analysis of the crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County. For the roadways in the RCI, the third, fourth and fifth digits are the linear referencing section for the State Highway System within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the county, for the route on which the intersection falls.

Note: There may be multiple intersections qualifying from the same route.

- **MP**: Milepost. The milepost on the Roadway ID that identifies the exact point where the intersection exists. When multiple State Roads intersect, there should be multiple Roadway IDs and MPs noted.
- **Road Name**: Road name for the location. The road name comes from the Crash Locator Analysis Report (CLAR) application used during end of year analysis on local roads.
- **Intersect Desc**: Intersecting Roadway.
 - **STATE**: The description for the intersecting feature at the identified location.
 - **LOCAL**: The local name for the intersecting roadway, according to the map alias file at the Safety Office.
- **No. of Crashes**: The number of crashes that occurred within the influence area of the intersection during the years spanned by this analysis.
- **AADT**: Annual Average Daily Traffic. The average number of vehicles per day that passed through the intersection during the analysis period.
- **Fatalities**: The total number of fatalities (Injury Severity code “5”) as a result of crashes related to the intersection, for the years spanned by the analysis.
- **Injuries**: The total number of injuries (Injury Severity codes 2, 3, or 4) as a result of crashes related to the intersection, for the years spanned by the analysis.
- **PDO**: Property Damage Only. The total number of crashes related to the intersection, for the years spanned by the analysis, for which no injuries were reported.
- **Edit**: Each data row will contain a hyperlink labeled either **Edit** or **View** depending on whether the user has permissions to edit the High Crash Locations data in the result row.
- **Map ID**: The number that identifies the segment on the accompanying map. It is composed of:
2.3.3.4 High Crash Locations – HRRR Results Sample

Columns Displayed:

- **Dist**: DOT Managing District.
- **RdwyID**: Roadway ID. 8-character code identifies the roadway in terms of the linear-referencing system used for the routing that is used for assignment of location and for analysis of the crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways that are not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County.

Note: See the Appendix 1, Table of Counties, for a cross-reference by County Number or County Name.

For the roadways in the RCI, the third, fourth and fifth digits are the linear reference section for the SHS (State Highway System) within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the county, for the route on which the segment falls.

Note: There may be multiple segments qualifying from the same route. Segments on the same route are differentiated by the mile point range.
ALL ROADS CRASH ANALYSIS (ARCA)

- **BMP**: Beginning Milepost. The milepost on the Roadway ID that identifies the exact point where the segment begins.
- **EMP**: Ending Milepost. The milepost on the Roadway ID that identifies the exact point where the segment ends.
- **Road Name**: Road name for the location. The road name comes from the Crash Locator Analysis Report (CLAR) application used during end of year analysis on local roads.
- **No. of Crashes**: The total number of qualifying crashes that have occurred on that roadway segment during the years spanned by this analysis. For this particular analysis, only crashes in which at least one person was fatally (Injury Severity code “5”) or severely (Injury Severity code “4”) injured are counted.
- **AADT**: Annual Average Daily Traffic. The average number of vehicles per day (annual average) traveling through this roadway segment.
- **Fatalities**: The total number of fatalities (Injury Severity code “5”) as a result of crashes related to the segment, for the years spanned by the analysis.
- **Injuries**: The total number of injuries (Injury Severity codes 2, 3, or 4) as a result of crashes related to the segment, for the years spanned by the analysis.

Note: This count includes injuries other than the fatal injuries and in addition to the severe injuries that qualify the crashes.

- **PDO**: Property Damage Only. The total number of crashes, related to the segment, for the years spanned by the analysis, for which no injuries were reported.
- **Edit**: Each data row contains a hyperlink labeled either Edit or View depending on whether the user has permissions to edit the High Crash Locations data on this result row.
- **Map ID**: The number that identifies the segment on the accompanying map. It is composed of:
 - First two characters are “HR” (High Risk Rural Road).
 - Third character contains the District Number.
 - Fourth and Fifth characters contain the DOT County Number.
 - The Segment Sequence separated by a dash (-), forms the last part of the Map ID.

2.3.3.5 Edit a High Crash Location

Access to “Edit a High Crash Location” information is restricted to authorized personnel only. If the user needs additional privileges, they must contact the FDOT Traffic Safety Administrator to request a change to their ARCA system privileges. In each result the data row, the “Edit” Column will display View for non-authorized users or Edit for users authorized to change High Crash Location data. Clicking on the displayed icon will transfer the user to the Location Detail subpage to view or edit the crash related detailed data. If the user has view-only access, data field results will be grayed out and protected from update.
2.3.3.6 Location Detail Subpage

Authorized users can manage High Crash Location information related to the result row selected using this webpage.

This figure is enlarged to show the specific subsections of the Location Detail subpage. Authorized users can update data as needed. The subsections of the Location Detail will be split out to
document each section and what is represented by the data displayed because some of the information varies depending on what Type and Source were selected on the High Crash Locations query page.

![Figure 15 High Crash Location Detail Subpage - Enlarged](image)

2.3.3.6.1 Location Detail - Location and Analysis Subsection

The information displayed in the “Location and Analysis” section on the Location Detail webpage will be explained in more detail as it varies depending on the Type and Source choices made when running the underlying query. An example of each report combination will be shown, with an example (using the first returned record from the query) of the Location and Analysis information returned, followed by the definition for each data field displayed.
2.3.3.6.1.1 High Risk Rural Roads Listing for Local Roads
Type = “HRRR”, Source = “Local”

2.3.3.6.1.2 High Risk Rural Roads Listing for Local Roads – Location and Analysis Data
Fields Returned

Field Definitions
- **District**: DOT managing district.
- **County**: DOT county code and county name in which the segment is located.
• **Roadway ID**: Roadway Identifier. 8-character code identifies the roadway in terms of the linear-referencing system used for the routing that is used for assignment of location and for analysis of crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways that are not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County. For the roadways in the RCI, the third, fourth and fifth digits are the linear reference section for the State Road System within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the county, for the route on which the segment falls. **Note** that there may be multiple segments qualifying from the same route. Segments on the same route are differentiated by the milepoint range.

• **Begin Milepoint**: The beginning milepoint of the analyzed segment. It places the beginning of the segment along the contiguous route on which the analyzed segment falls.

• **End Milepoint**: The ending milepoint of the analyzed segment. It places the end of the segment along the contiguous route on which the analyzed segment falls.

• **Roadway Name**: Road name for the location. The local name for the roadway on which the segment occurs, according to the map alias file at the State Safety Office.

• **Roadway Category**: The classification of the roadway, or the roadway type, for purposes of analysis. This element is a combination of Urban/Rural (U/R) and Divided/Undivided (U/D).

• **AADT**: Annual Average Daily Traffic. The average number of vehicles per day (annual average) traveling through this roadway segment during the year span of the analysis. The source is RCI for roadways with documented AADT values. Values not documented in the RCI are estimated.

• **Crash Count**: The total number of qualifying crashes that have occurred on that roadway segment for the years spanned by this analysis. For this particular analysis, only crashes in which at least one person was fatally (Injury Severity code 5) or severely (Injury Severity code “4”) injured are counted. This is the total number of crashes involving one or more traffic fatalities or incapacitating injuries that have occurred within the limits of the analyzed segment or within the defined range of the analyzed intersection during the year span of the analysis. **Note** that this count includes injuries other than the fatal injuries and in addition to the severe injuries that qualify the crashes. Injuries counted are any person with a coded injury severity of “2” (possible), “3” (non-incapacitating), or “4” (incapacitating).
• **Crash Rate:** The total number of crashes on the segment divided by the Millions of Vehicle Miles (MVM) traveled for that segment. This is the rate of fatal and serious injury crashes per Million Vehicle Miles for the analyzed segment. It is the number of crashes with highest injury level "5" (fatal) or "4" (incapacitating), divided by the MVM. Only crashes in the database that have at least one severe injury or fatality and that fall within the limits of the segment are counted.

\[
\text{Count of Crashes on Segment} \quad = \quad \text{Actual Crash Rate for Segment} \\
\frac{\text{MVM for Segment}}{}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed segment. It is in units of Millions of Vehicle Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

• **Avg Crash Rate:** Average Crash Rate. The average rate of fatal and serious injury crashes per Million Vehicle Miles for the roadway category of the analyzed segment for the region (District or County) of the analysis. The total number of crashes on all segments in the same category within the region of analysis is divided by the total Millions of Vehicle Miles (MVM) traveled on all roadways in the same category within the region of analysis. It is the total number of crashes with highest injury level "5" (fatal) or "4" (incapacitating) on all roadways of the same class within the area, divided by the MVMRC (see below). Only crashes in the database that have at least one severe injury or fatality are counted. The region of analysis is either the District or County.

\[
\text{Count of Crashes on Roadways of Same Category} \quad = \quad \text{Average Crash Rate for Roadway Category} \\
\frac{\text{Cumulative MVM for All Roads in Same Category} \quad \text{within the region of analysis (District or County)}}{}
\]

\or

\[
\text{Count of Crashes on Roadways of Same Category} \quad = \quad \text{Average Crash Rate for Roadway Category} \\
\frac{\text{MVMRC within the region of analysis (District or County)}}{}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed
segment. It is in units of Millions of Vehicle-Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

MVMRC is Millions of Vehicle Miles for the Roadway Category. This is the total, cumulative traffic volume for all roadway segments in the same category and area of the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). It is the cumulative (summed) MVM for all segments of the same category within the area (District or County). This is used to determine the average crash rate against which the actual crash rate of the analyzed segment is evaluated.

2.3.3.6.1.3 Segments Listing for State Highway System (SHS)
Type = “Segment”, Source = “State”

2.3.3.6.1.4 Segments Listing for State Highway System (SHS) – Location and Analysis Data Fields Returned
Field Definitions

- **District**: DOT managing district.
- **County**: DOT county code and county name in which the segment is located.
- **Roadway ID**: 8-character code, based on the Department’s linear referencing scheme, identifies the part of the State Highway System (SHS) that contains the roadway segment. The first two digits are the numeric DOT code for County; the third, fourth, and fifth digits are the linear reference section for the SHS within County, and the sixth, seventh, and eighth digits identify the subdivision of the primary section. **Note** that there may be multiple segments qualifying from the same route. Segments on the same route are differentiated by the milepoint range.
- **Begin Milepoint**: The beginning milepoint of the analyzed segment. It places the beginning of the segment along the contiguous route on which the analyzed segment falls.
- **End Milepoint**: The ending milepoint of the analyzed segment. It places the end of the segment along the contiguous route on which the analyzed segment falls.
- **Roadway Name**: Road name for the location. The State route number assigned to the location.
- **Roadway Category**: The classification of the roadway, or the roadway type, for purposes of analysis. This element is an abbreviated code that corresponds to one of the 38 roadway categories defined for the SHS. The roadway types for limited access are separated by rural and urban and by interstate, toll, “other”, and ramp. For open access, the roadway types are...
separated by rural, suburban and urban, and by divided/undivided, median type (raised or painted), and by number of lanes or one-way status.

- **AADT**: Annual Average Daily Traffic. The average number of vehicles per day (annual average) traveling through this roadway segment during the year span of the analysis. The source is RCI for roadways with documented AADT values. Values not documented in the RCI are estimated.

- **Crash Count**: The total number of crashes that have occurred within the limits of the analyzed segment during the year span of the analysis. All located crashes in the database that qualify based on the defined limits of the analysis are reported. The database contains only long-form-reported crashes.

- **Fatality Count**: The total number of fatalities (Injury Severity code 5) due to crashes that have occurred within the limits of the analyzed segment during the year span of the analysis.

- **Injury Count**: The total number of injuries (Injury Severity codes 2, 3, or 4) due to crashes that have occurred within the limits of the analyzed segment during the year span of the analysis. All injuries in all located crashes in the database that qualify based on the defined limits of the analysis are reported. Injuries are any person with a coded injury severity of “2” (possible), “3” (non-incapacitating), or “4” (incapacitating).

- **Non Injury Count (PDO)**: Property Damage Only. The total number of crashes that have occurred within the limits of the analyzed segment during the year span of the analysis that did not result in any injury or fatality.

- **Crash Rate**: The total number of crashes on the segment divided by the Millions of Vehicle Miles (MVM) traveled for that segment. This is the rate of crashes per Million Vehicle Miles for the analyzed segment. All crashes in the database that fall within the limits of the segment are counted.

\[
\text{Count of Crashes on Segment} \quad \text{MVM for Segment} \quad = \quad \text{Actual Crash Rate for Segment}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

- **Avg Crash Rate**: Average Crash Rate. The average rate of crashes per Million Vehicle Miles for the roadway category of the analyzed segment for the region (District or County) of the analysis. The total number of crashes on all segments in the same category within the region of analysis is divided by the total Millions of Vehicle Miles (MVM) traveled on all roadways in the
same category within the region of analysis. It is the total number of crashes on all roadways of the same category within the region divided by the MVMRC. The region of analysis is either the District or County.

\[
\frac{\text{Count of Crashes on Roadways of Same Category within the region of analysis (District or County)}}{\text{Cumulative MVM for All Roads in Same Category within the region of analysis (District or County)}} = \text{Average Crash Rate for Roadway Category}
\]

or

\[
\frac{\text{Count of Crashes on Roadways of Same Category within the region of analysis (District or County)}}{\text{MVMRC within the region of analysis (District or County)}} = \text{Average Crash Rate for Roadway Category}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

MVMRC is Millions of Vehicle Miles for the Roadway Category. This is the total, cumulative traffic volume for all roadway segments in the same category and region of the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). It is the cumulative (summed) MVM for all segments of the same category within the region (District or County). MVMRC is used to determine the average crash rate against which the actual crash rate of the analyzed segment is evaluated.

2.3.3.6.1.5 Intersections Listing for State Highway System (SHS)
Type = “Intersection” and Source = “State”
2.3.3.6.1.6 Intersections Listing for State Highway System (SHS) – Location and Analysis Data Fields Returned

Field Definitions

- **District**: DOT managing district.
- **County**: DOT county code and county name in which the intersection is located.
- **Roadway ID**: Roadway ID. 8-character code for the primary contiguous route, based on the Department’s linear referencing scheme, identifies the part of the State Highway System (SHS)
that contains the intersection. The first two digits are the numeric DOT code for County; the third, fourth, and fifth digits are the linear reference section for the SHS within County, and the sixth, seventh, and eighth digits identify the subdivision of the primary section.

- **Milepoint**: The milepost on the Roadway ID that identifies the exact point where the intersection exists.
- **On Roadway Name**: The State route number assigned to the location for the primary roadway. The primary roadway is selected based on the AADT values (highest AADT determines).
- **Int Roadway Name**: Intersecting Roadway Name. The local name for the roadway that intersects the primary contiguous route on which the analyzed intersection falls. The primary roadway is selected based on the AADT values (highest AADT determines). The intersecting roadway is the left-over route(s).
- **Category**: The Crash Rate Category Code for the dominant roadway at the intersection. A combination of the dominant (primary) road segment category and a more specific intersection classification, the primary road category is the classification of the roadway, or the roadway type, for purposes of analysis. The first two characters show the roadway category and the second two indicate the intersection classification which is based on number of entering/leaving legs and overall shape/configuration. It is an abbreviated code that corresponds to one of the 38 roadway categories defined for the SHS. The roadway types for limited access are separated by rural and urban and by interstate, toll, ‘other’, and ramp. For open access, the roadway types are separated by rural, suburban and urban, and by divided/undivided, median type (raised or painted), and by number of lanes or one-way status.
- **Leg Count**: The number of legs (roadway segments of different routes) that enter or leave (i.e. intersect the outer boundary of) the intersection polygon.
- **AADT**: Annual Average Daily Traffic. The average daily traffic volume (number of cars traveling through the intersection) for the analyzed intersection during the year span of the analysis. The source is RCI for roadways with documented AADT values. Values not documented in the RCI are estimated. An equation is used to sum and average the values for each “leg” of roadway that touches the intersection, so each contributing roadway is accounted for.
- **Crash Count**: The number of crashes that occurred within the influence area of the intersection during the years spanned by the analysis. This is the total number of crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis. All located crashes in the database (that qualify based on the defined limits of the analysis) are reported. The database contains only long-form-reported crashes.
- **Fatality Count**: The total number of fatalities (Injury Severity code 5) due to crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis.
• **Injury Count**: The total number of injuries (Injury Severity codes 2, 3, or 4) due to crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis. All injuries in all located crashes in the database (that qualify based on the defined limits of the analysis) are reported. Injuries are any person with a coded injury severity of “2” (possible), “3” (non-incapacitating), or “4” (incapacitating).

• **Non Injury Count (PDO)**: Property Damage Only. The total number of crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis that did not result in any injury or fatality.

• **Crash Rate**: The total number of crashes at the intersection divided by the Millions of Entering Vehicles (MEV) for that intersection. This is the rate of crashes per Million Entering Vehicles for the analyzed intersection. All crashes in the database that fall within the defined area of the intersection are counted.

\[
\frac{\text{Count of Crashes at Intersection}}{\text{MEV for Intersection}} = \text{Actual Crash Rate for intersection}
\]

where \(\text{MEV}\) is the total, cumulative traffic volume for the year span of the analysis for the analyzed intersection. It is in units of Millions of Entering Vehicles. MEV is calculated by multiplying the AADT by the number of days in the study, then dividing by 1,000,000. Length is not factored into the Intersection analyses.

• **Avg Crash Rate**: Average Crash Rate. The average rate of crashes per Million Entering Vehicles (MEV) for the roadway category of the analyzed intersection for the region (District or County) of the analysis. The total number of crashes at all intersections of the same roadway category within the region of analysis is divided by the total Millions of Entering Vehicles (MEV) for all intersections in the same category within the region of analysis. It is the total number of crashes at all intersections of the same category within the region divided by the MEVRC. The region of analysis is either the District or County.

\[
\frac{\text{Count of Crashes at Intersections of Same Category within the region of analysis (District or County)}}{\text{Cumulative MEV for All Intersections of Same Category within the region of analysis (District or County)}} = \text{Average Crash Rate for Intersection Category}
\]

or
where **MEV** is the total, cumulative traffic volume for the year span of the analysis for the analyzed intersection. It is in units of Millions of Entering Vehicles. Length is not factored into the Intersection analyses. The MEV is calculated by multiplying the AADT by the number of days in the study, then dividing by 1,000,000.

MEVRC is Millions of Entering Vehicles for the Roadway Category. This is the total, cumulative traffic volume for the year span of the analysis for all intersections in the same category and region of the analyzed intersection. It is in units of Millions of Entering Vehicles. It is the cumulative (summed) MEV for all intersections of the same category within the region (District or County). This is used to determine the average crash rate against which the actual crash rate of the analyzed intersection is evaluated.

2.3.3.6.1.7 Segments Listing for Local Roads

Type = “Segment” and **Source** = “Local”

<table>
<thead>
<tr>
<th>Dist</th>
<th>RdwyID</th>
<th>BMP</th>
<th>EMP</th>
<th>Road Name</th>
<th>No. of Crashes</th>
<th>AADT</th>
<th>Fatalities</th>
<th>Injuries</th>
<th>PDO</th>
<th>MapID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03503000</td>
<td>2.400</td>
<td>3.700</td>
<td>CR31/airport rd</td>
<td>54</td>
<td>70109</td>
<td>0</td>
<td>45</td>
<td>23</td>
<td>Edi LS103-01</td>
</tr>
<tr>
<td>1</td>
<td>03511000</td>
<td>3.500</td>
<td>5.200</td>
<td>CR 886/golden gate</td>
<td>68</td>
<td>47465</td>
<td>0</td>
<td>50</td>
<td>32</td>
<td>Edi LS103-02</td>
</tr>
<tr>
<td>1</td>
<td>12000026</td>
<td>0.000</td>
<td>2.841</td>
<td>Santa Barbara blvd</td>
<td>86</td>
<td>42510</td>
<td>2</td>
<td>63</td>
<td>43</td>
<td>Edi LS112-01</td>
</tr>
</tbody>
</table>
Field Definitions

- **District**: DOT managing district.
- **County**: DOT county code and county name in which the segment is located.
- **Roadway ID**: 8-character code identifies the roadway in terms of the linear-referencing system used for the routing that is used for assignment of location and for analysis of crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways that are not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County. For the roadways in the RCI, the third, fourth and fifth digits are the linear reference section for the State Highway System (SHS) within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the county, for the route on which the segment falls. **Note** that there may be multiple segments qualifying from the same route. Segments on the same route are differentiated by the milepoint range.
- **Begin Milepoint**: The beginning milepoint of the analyzed segment. It places the beginning of the segment along the contiguous route on which the analyzed segment falls.
- **End Milepoint**: The ending milepoint of the analyzed segment. It places the end of the segment along the contiguous route on which the analyzed segment falls.
- **Roadway Name**: Road name for the location. The local name for the roadway on which the segment occurs, according to the map alias file at the State Safety Office.

- **Roadway Category**: The classification of the roadway, or the roadway type, for purposes of analysis. This element is a combination of Urban/Rural (U/R) and Divided/Undivided (U/D).

- **AADT**: Annual Average Daily Traffic. The average number of vehicles per day (annual average) traveling through this roadway segment during the year span of the analysis. The source is RCI for roadways with documented AADT values. Values not documented in the RCI are estimated.

- **Crash Count**: The total number of crashes that have occurred within the limits of the analyzed segment during the year span of the analysis. All located crashes in the database that qualify based on the defined limits of the analysis are reported. The database contains only long-form-reported crashes.

- **Fatality Count**: The total number of fatalities (Injury Severity code 5) due to crashes that have occurred within the limits of the analyzed segment during the year span of the analysis.

- **Injury Count**: The total number of injuries (Injury Severity codes 2, 3, or 4) due to crashes that have occurred within the limits of the analyzed segment during the year span of the analysis. All injuries in all located crashes in the database that qualify based on the defined limits of the analysis are reported. Injuries are any person with a coded injury severity of “2” (possible), “3” (non-incapacitating), or “4” (incapacitating).

- **Non Injury Count (PDO)**: Property Damage Only. The total number of crashes that have occurred within the limits of the analyzed segment during the year span of the analysis that did not result in any injury or fatality.

- **Crash Rate**: The total number of crashes on the segment divided by the Millions of Vehicle Miles (MVM) traveled for that segment. This is the rate of crashes per Million Vehicle Miles for the analyzed segment. All crashes in the database that fall within the limits of the segment are counted.

\[
\frac{\text{Count of Crashes on Segment}}{\text{MVM for Segment}} = \text{Actual Crash Rate for Segment}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

- **Avg Crash Rate**: Average Crash Rate. The average rate of crashes per Million Vehicle Miles for the roadway category of the analyzed segment for the region (District or County) of the
The total number of crashes on all segments in the same category within the region of analysis is divided by the total Millions of Vehicle Miles (MVM) traveled on all roadways in the same category within the region of analysis. It is the total number of crashes on all roadways of the same category within the region divided by the MVMRC. The region of analysis is either the District or County.

\[
\frac{\text{Count of Crashes on Roadways of Same Category}}{\text{Cumulative MVM for All Roads in Same Category}} \quad = \quad \text{Average Crash Rate for Roadway Category}
\]

\[
\frac{\text{Count of Crashes on Roadways of Same Category}}{\text{MVMRC within the region of analysis}} \quad = \quad \text{Average Crash Rate for Roadway Category}
\]

where MVM is the total, cumulative traffic volume factoring in the segment length for the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). MVM is calculated by multiplying the AADT by the length of the segment and by the number of days in the study, then dividing by 1,000,000.

MVMRC is Millions of Vehicle Miles for the Roadway Category. This is the total, cumulative traffic volume for all roadway segments in the same category and region of the analyzed segment. It is in units of Millions of Vehicle-Miles (traveled). It is the cumulative (summed) MVM for all segments of the same category within the region (District or County). MVMRC is used to determine the average crash rate against which the actual crash rate of the analyzed segment is evaluated.

2.3.3.6.1.9 Intersections Listing for Local Roads
Type = “Intersection” and Source = “Local”
2.3.3.6.1.10 Intersections Listing for Local Roads – Location and Analysis Data Fields Returned

Field Definitions

- **District**: DOT managing district.
- **County**: DOT county code and county name in which the intersection is located.
- **Roadway ID**: Roadway ID. 8-character code for the primary contiguous route identifies the roadway in terms of the linear-referencing system used for the routing that is used for
assignment of location and for analysis of crash rates. For roadways that are captured by the DOT’s Roadway Characteristics Inventory (RCI) the Roadway ID is all numeric, and for roadways that are not captured in the RCI the Roadway ID contains an “A” character in the third position. The first two digits of the code are the numeric DOT code for County. For the roadways in the RCI, the third, fourth and fifth digits are the linear reference section for the State Highway System (SHS) within County, and the sixth, seventh and eighth digits identify the subdivision of the primary section. For roadways not in the RCI, characters three through eight are a unique identifier, within the county, for the route on which the intersection falls. Note that there may be multiple intersections qualifying from the same route.

- **Milepoint**: The milepost on the primary Roadway ID that identifies the exact point where the intersection exists.

- **On Roadway Name**: The local name for the primary roadway assigned to the intersection, according to the map alias file at the State Safety Office. The primary roadway is selected based on the AADT values (highest AADT determines).

- **Int Roadway Name**: Intersecting Roadway Name. The local name for the roadway that intersects the primary contiguous route on which the analyzed intersection falls, according to the map alias file at the State Safety Office. The primary roadway is selected based on the AADT values (highest AADT determines). The intersecting roadway is the left-over route(s).

- **Category**: The Crash Rate Category Code for the dominant roadway at the intersection. A combination of the dominant (primary) road segment category and a more specific intersection classification, the primary road category is the classification of the roadway, or the roadway type, for purposes of analysis. The first two characters show the roadway category and the second two indicate the intersection classification which is based on number of entering/leaving legs and overall shape/configuration. It is a combination of Urban/Rural (U/R), Divided/Undivided (U/D), Number of Legs (3, 4 or 5), and intersection configuration. Configuration codes are “X” for a crossing intersection, “T” for a perpendicular intersection that does not cross, “Y” for an intersection with a distinctly angled leg or legs, “M” for a merging intersection (usually on limited access roadways), “C” for a median break.

- **Leg Count**: The number of legs (roadway segments of different routes) that enter or leave (i.e. intersect the outer boundary of) the intersection polygon.

- **AADT**: Annual Average Daily Traffic. The average daily traffic volume (number of cars traveling through the intersection) for the analyzed intersection during the year span of the analysis. The source is RCI for roadways with documented AADT values. Values not documented in the RCI are estimated. An equation is used to sum and average the values for each “leg” of roadway that touches the intersection, so each contributing roadway is accounted for.

- **Crash Count**: The number of crashes that occurred within the influence area of the intersection during the years spanned by the analysis. This is the total number of crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis. All
located crashes in the database (that qualify based on the defined limits of the analysis) are reported. The database contains only long-form-reported crashes.

- **Fatality Count**: The total number of fatalities (Injury Severity code 5) due to crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis.

- **Injury Count**: The total number of injuries (Injury Severity codes 2, 3, or 4) due to crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis. All injuries in all located crashes in the database (that qualify based on the defined limits of the analysis) are reported. Injuries are any person with a coded injury severity of “2” (possible), “3” (non-incapacitating), or “4” (incapacitating).

- **Non Injury Count (PDO)**: Property Damage Only. The total number of crashes that have occurred within the defined range of the analyzed intersection during the year span of the analysis that did not result in any injury or fatality.

- **Crash Rate**: The total number of crashes at the intersection divided by the Millions of Entering Vehicles (MEV) for that intersection. This is the rate of crashes per Million Entering Vehicles for the analyzed intersection. All crashes in the database that fall within the defined area of the intersection are counted.

\[
\text{Count of Crashes at Intersection} \quad = \quad \text{Actual Crash Rate for Intersection}
\]

\[
\text{MEV for Intersection}
\]

where **MEV** is the total, cumulative traffic volume for the year span of the analysis for the analyzed intersection. It is in units of Millions of Entering Vehicles. MEV is calculated by multiplying the AADT by the number of days in the study, then dividing by 1,000,000. Length is not factored into the Intersection analyses.

- **Avg Crash Rate**: Average Crash Rate. The average rate of crashes per Million Entering Vehicles (MEV) for the roadway category of the analyzed intersection for the region (District or County) of the analysis. The total number of crashes at all intersections of the same roadway category within the region of analysis is divided by the total Millions of Entering Vehicles (MEV) for all intersections in the same category within the region of analysis. It is the total number of crashes at all intersections of the same category within the region divided by the MEVRC. The region of analysis is either the District or County.
where \(\text{MEV} \) is the total, cumulative traffic volume for the year span of the analysis for the analyzed intersection. It is in units of Millions of Entering Vehicles. Length is not factored into the Intersection analyses. The MEV is calculated by multiplying the AADT by the number of days in the study, then dividing by 1,000,000.

\(\text{MEVRC} \) is Millions of Entering Vehicles for the Roadway Category. This is the total, cumulative traffic volume for the year span of the analysis for all intersections in the same category and region of the analyzed intersection. It is in units of Millions of Entering Vehicles. It is the cumulative (summed) MEV for all intersections of the same category within the region (District or County). This is used to determine the average crash rate against which the actual crash rate of the analyzed intersection is evaluated.

2.3.3.6.2 Location Detail – Analysis Parameters Subsection

The Analysis Parameters subsection is fairly consistent across the various types of report queries that can be run. The differences based on the Type and Source choice chosen is documented below and the fields displayed consist of the following information.

- **Data Source:** A combination of the report Type (segment, intersection, or high risk rural road) and Source of data flag (state or local) to identify the analysis type.

 The codes for the Report Type are:
 - “HR” for Local High Risk Rural Road
 - “L” for Local
The codes for the Source of Data Flag are:
- “I” for Intersection
- “S” for Segment

- **Analysis Year**: The analysis calendar year.
- **From Year**: The earliest calendar year of the year span for which the report was run. The reports may be run for a single year or for a grouping of consecutive years. The year span is part of the initial run parameters.
- **To Year**: The latest calendar year of the year span for which the report was run. The reports may be run for a single year or for a grouping of consecutive years. The year span is part of the initial run parameters.
- **Analysis Length**: Only populated for Type = “Segment” or “HRRR” reports and is the total length (in miles) of the analyzed segment. It should equal to the difference between the End Milepoint and Begin Milepoint within 0.001 miles (shown in the Location and Analysis subsection above).
- **Analysis Step Length**: Only populated for Type = “Segment” or “HRRR” reports and gives the step increment length given as the initial parameter for the analysis.
- **Region**: The area of analysis. The region is either the District or the County.
- **Min Crash Count**: The input parameter used to define the minimum number of crashes that occurred that was required for this crash location to be included in the annual analysis.
- **Top % Selected**: The output filter parameter used to determine whether this crash was within the designated top percentage of crashes that are included in the annual analysis report. Displays as a percentage in the following format: 0.00 %
- **Min Results Per County**: The minimum number of high crash results included in the annual analysis report for each County

2.3.3.6.3 Location Detail – Potential Remedies/Implementation Impediments/Comments Subsections

The Potential Remedies text block provides an area for an authorized user to describe potential remedies available to address the high crash levels at this location. The Implementation Impediments text block provides an area to describe impediments to implementing one or more of the potential remedies listed. The Comments text block includes District comments and recommendations from the District Safety Office for the Managing District in which the location
exists. The comments address what safety improvements, if any, are scheduled to address safety concerns and may also address the issue of whether or not safety improvements are applicable or possible given the field conditions particular to the segment or intersection.

The Potential Remedies, Implementation Impediments, and Comments each have a built-in feature which allows that the auto-population of a previous year’s text be entered and included in the current year’s corresponding text block so as to provide a full historical reference available without requiring that a user re-enter the information. Additional new information can be added or existing information changed as needed. The user must limit the overall text with the text block to 4000 characters where noted. Below is an example, using the Comments text block, to demonstrate how this auto-population feature works.

Example of Auto-population of Text Feature

Comments for a recently generated analysis year high crash location record include information retrieved from the prior year report locations that fall within the same milepost range/vicinity. These comments have the following prefix syntax and are followed by the comment verbiage retrieved:

- Segments/High Risk Rural Roads: [info:Analysis Year-Roadway ID-Begin Milepoint-End Milepoint] Comments

Example: The user is reviewing a segment location with the following set of identifiers:

- Analysis Year: 2010
- Roadway ID: 05503000
- Begin Milepoint: 2.400
- End Milepoint: 3.7

and Comments were entered for this location in 2009, the user will see the following entry in the Comments field:

Here, the user can determine that the comments were retrieved from the previous Analysis Year 2009 for Roadway ID 03503000, Begin Milepoint 2.4, and End Milepoint 3.7.
• Intersections: \texttt{[info:Analysis Year-Roadway ID-Milepost-Node]} Comments

\textbf{Example:} The user is reviewing an intersection location with the following set of identifiers:

\texttt{[info:2009-03503000-2.4-2]} Intersection improvements scheduled.

Here, the user can determine that the comments were retrieved from the previous Analysis Year 2009 for Roadway ID 03503000, Milepoint 2.4 and Node 2.

If no previous matching records for the location were found, the Comments field for the new records is set to indicate the analysis year, data source and the report type. For an example: “2010 Local Segment”.

2.3.3.6.4 Location Detail – Estimated Cost Subsection
The Estimated Cost data entry text block provides an area for the user to enter the estimated cost to implement the Potential Remedies listed.

2.3.3.6.5 Location Detail – Status Subsection
The user can complete the information above in multiple sessions. By default, the Status for all data entered for the location is classified as \textit{New}. The user can change the Status to \textit{Working} as they continue updating the data. When the data are finalized, the user can change the status from \textit{Working to Final}.
2.3.3.6.6 Location Detail - Navigation Menu

Click **Save** on the left panel navigation menu to save Location Detail data changes.

Click **Back** to return to the High Crash Locations query results list.

Clicking **Map Location** opens the SSOGis system in a separate window showing the location of the crash in focus in the Location Detail subpage, see figure below. The SSOGis system is covered in more detail in Section 3 of this document.

![SSOGis Display from Map Location Link on Location Detail subpage](image)

Note: The SSOGis system provides a data grid with a horizontal scroll bar to allow for all data columns to be viewable.

1 Selection of the Map Location button has the same behavior as selecting the hyperlinked Map ID on the High Crash Locations screen.
Referring back to the information shown in Figure 10, there are other mapping viewing options within ARCA.

![High Crash Locations Query Result Page - Map ID Link](image)

2.3.3.7 High Crash Locations Query Result Page - Map ID Link

By clicking on the corresponding **Map ID** link (example: Sl101-001) for a row in the sample results in Figure 10 above, the SSOGis application opens in a separate window and displays a map of the recorded high crash location.
2.3.3.8 High Crash Locations Query Result Page - Map All Locations Link

If the user wishes to see a map showing all locations returned in the High Crash Locations list, shown in Figure 10 sample above, select Map All Locations from the High Crash Locations submenu in the left panel. The figure below depicts the result of this selection for the list of locations in the Figure 10 sample.
Figure 18 SSOGis - Result of Map All Locations

Note: The SSOGis system provides a data grid with both vertical and horizontal scroll bars to allow for all data columns and all data rows to be viewable.
2.3.3.9 High Crash Locations Query Result Page - Export List to Excel Link

The user may export the results returned in the High Crash Locations list, shown in Figure 10 above, by selecting **Export List to Excel** from the High Crash Locations submenu in the left panel. The figure below depicts the result of this selection for the list of location in the sample. This feature includes a floating action bar at the bottom that allows the user to choose whether they want to open, save or cancel the Export List to Excel function.

If the user chooses to open or save, they may receive the following message, respond with **Yes** to continue to download the Excel file. Or choose **No** to stop the download function. Choosing **Help** will open an Excel Help window explaining the message.
The Excel file will open in a separate window and contains more detailed information than is shown on the query results list. The user can manage the file using all the normal Excel functionality.

![Microsoft Office Excel]

Figure 20 Export List to Excel - Sample Spreadsheet

2.3.4 SAFETEA-LU Report Analysis

Selecting the SAFETEA-LU Report Analysis from the ARCA submenu or from within the High Crash Locations submenu, will open a PDF file in Adobe Reader in a separate window containing a document describing the Analysis Data Tables Column Descriptions.
3. SSOGis System

The State Safety Office Geographic Information System (SSOGis) allows access to crash data and road information on the map. This system is accessible from the Traffic Safety Portal to display map(s) containing information from the ARCA and/or CRASH systems. As this user manual applies to ARCA, it will reference functionality within SSOGis that relates to ARCA data.

SSOGis includes its own Help file (see the button in figure below) which guides the user in the use the components, features, tools and functions of the system. This user manual describes the SSOGis system and its functionality at a high level only. For a more in-depth look at the system, refer to the SSOGis Help documentation.
Figure 21 SSOGis System Overview

Clicking on the Florida Traffic Safety Portal link in the right side of the SSOGis banner (see the expanded view inset here) will open the portal’s Homepage in a separate browser window.
3.1 Components

The following subsections examine several basic components within SSOGis

3.1.1 Navigation Tool

Allows the user to do the following:

Pan: Allows the user to navigate the map(s) using the directional buttons or manually. The user may drag the entire map to a preferred place within the viewer to facilitate and simplify the study of multiple locations. See expanded view of the Panning Tool below.

Zoom In and **Zoom Out:** Respectively narrows or enlarges the field(s) of study. To execute, select the icon and click the desired location to generate a new view. The user may also choose a specific area by holding down the left mouse button and dragging the cursor over the area to highlight that particular field.

Full Extent: Provides a full map(s) view by resizing the map to fit within the given window.

3.1.1.1 Panning Tool Functional Buttons

The panning tool allows the user to move across the map in any direction (using directional buttons). The user can also drag the outer border of the compass to rotate the view of the map.
3.1.2 SSOGis Application Toolbar

The application toolbar displays the tools that are available for the action. Clicking on a button within the toolbar will open the tool. When a tool is already open, the toolbar will highlight the current tool in use. The figure below shows the toolbar and a legend explaining what each tool button does. Refer to the SSOGis System’s Help file for more detailed instructions on using the available tools.
Figure 22 SSOGi Application Toolbar Legend
3.1.3 Map

The background for the map, which shows the base roads, city boundaries, contours and geographic features, is a static picture provided by the Environmental Systems Research Institute (ESRI). It is not an information layer. Therefore, it cannot be queried and has no available legend. The other layers, however, are provided by the Florida Department of Transportation State Safety Office (SSO) and have information that can be queried. The roads layer for the current publication is based on TeleAltas version 10.2 and does not always exactly align with the ESRI background. The next map update will be a change to NavTeq 2013 Q1, which should align much more closely with the background. Likewise, older analysis data presented on the map may have been generated on a version of the map that is older than or different from the background or most current roads layer. Because of this, it also may not always align exactly with the newest map or with the background.

3.1.4 Help Viewer

The SSO GIS Help Viewer contains information related to selecting Layers and the Legend defining the information found in the layers.
3.1.4.1 SSOGIS Help – Layers Tab

Figure 23 SSOGIS Help – Layers Tab
3.1.4.2 SSO GIS Help – Legend Tab

Figure 24 SSO GIS Help – Legend Tab
3.1.5 Data

SSOGis uses the following data sources:

- The information connected to the roads layer is extracted from various FDOT databases for use within the Roadway Characteristics Inventory (RCI) and Crash Analysis and Reporting (CAR and CLAR).
- Crash information is from the Crash Analysis and Reporting (CAR) database and includes only long-form-reported crashes and do not currently include any short-form-reported crashes.
- High Crash Segments and High Crash Intersections are derived from SSO crash rate analysis processes and are not intended to be complete or exhaustive. Thus, their inclusion here does not imply any particular ranking or limitation.

The information presented on the Florida Traffic Safety Web Portal has been compiled from information collected for the purpose of identifying, evaluating or planning safety enhancements. It is used to develop highway safety construction improvements projects which may be implemented utilizing Federal Aid Highway funds. Any product displaying this notice or provided by the FDOT SSO or derived from the Florida Traffic Safety Web Portal shall be used only for the purposes deemed appropriate by the Florida Department of Transportation (see Title 23, United States Code, Section 409). Also note that the Florida Department of Highway Safety and Motor Vehicles (DHSMV) is the official custodian of the crash reports. Thus, the numbers that reported by DHSMV are the official numbers. The FDOT SSO maintains its own database with Long Form crash data sent by DHSMV. However, due to differences in database management techniques, the Safety Office counts are rarely an exact match with DHSMV numbers. The DHSMV, however, does not perform crash location processing.

The figure below shows the results for a single Map ID link (e.g., S1101-001) selection from the query results. The crash location shown in the data grid is represented by the symbol on the map, see the green rectangle below. When the map is zoomed out, the user can still distinguish this single point, but can also see all crash locations around it, marked by the symbol(s). How much the user sees is relative to the view extent level of the map.
The following example shows the results when the **Map All Locations** button was chosen from ARCA or the CRASH system query results. The crash locations shown in the data grid are represented by the 📍 symbols on the map, see the green rectangle below. When the map is zoomed out, the user can still distinguish these locations, but can also see *all* crash locations around them, marked by the 🌍 symbol(s). How much the user sees is relative to the view extent level of the map – the maps below shows an example of the “full extent” view and a zoomed in view of the multiple locations.
See the examples below for fully-zoomed and full extent views.

![Figure 26 Data – Full Extent View](image)

Figure 27 Data – Fully-Zoomed View

Note: The map’s view extent does not affect the data queried. In other words, zooming the map in or out does not re-query the database for new data.
4. Provide Feedback About This Guide

Thank you for reviewing the ARCA User Manual. We hope you found it informative and easy to use. We solicit your feedback with suggestions or ideas if we can improve it in any way. You may contact us directly or use the portal’s Feedback option, re-capped below for your convenience.

Florida Traffic Safety Portal Administrator
FDOT Safety Office 605 Suwannee Street, M.S. 53
Tallahassee FL 32399-0450

Phone: (850) 414-3100
Fax: (850) 414-4221
Email: co-tsw@dot.state.fl.us
Figure 28 Feedback Link
4.1 Feedback Feature

Located at the bottom of each page on the Florida Traffic Safety Portal (refer to red arrow in the example of the Home page shown in the figure above.)

4.1.1 Instructions

The Feedback feature provides a means for users to send feedback to the department by clicking on the link.

a. Once clicked, a form is generated for the user to submit comments and/or questions.
 i. If the user is an internal FDOT user several fields are pre-populated based on the information listed in Active Directory.
 ii. If the user is a non-registered public user using the PRODUCTION Internet URL, all fields shown in the screenshot below will be blank unless entered manually by you.

![Feedback Form Screenshot]

b. The user must enter comments or questions in the **Message** field before submitting the
feedback.

iii. This is a required field.

iv. If not entered before clicking on the Submit button, the following warning message is displayed. Click the OK button or the button to close the message window.

v. Enter feedback in the Message field, click on the Submit button.

vi. An email is sent to a group email account (co-tsw@dot.state.fl.us).

1. Note – the system will check for email address, as noted below, before sending the feedback email.

c. The system defaults to No for the “I would like to be contacted.” statement. If the user wishes to be contacted, please select the Yes radio button and enter their email address before submitting the feedback.

vii. If Yes is selected without information in the E-mail field, the following warning message is displayed. Click the OK button or the button to close the message window.
viii. Enter the user’s email address into the **E-mail**: field, click on the **Submit** button and an email is sent to a group email account (**co-tsw@dot.state.fl.us**).

d. The user can click the **Clear** button to reset the feedback form to its original display state.
e. Use the browser’s **Back** arrow button to abandon the Feedback process or when the Feedback process is completed, to return to the previous page in focus.
f. The user may use any of the other navigational links available, if desired.
5. Appendix 1: Table of Counties

<table>
<thead>
<tr>
<th>County Name</th>
<th>DOT County Number</th>
<th>DOT Geographic District</th>
<th>County Name</th>
<th>DOT County Number</th>
<th>DOT Geographic District</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachua</td>
<td>26</td>
<td>02</td>
<td>Charlotte</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>Baker</td>
<td>27</td>
<td>02</td>
<td>Citrus</td>
<td>02</td>
<td>07</td>
</tr>
<tr>
<td>Bay</td>
<td>46</td>
<td>03</td>
<td>Collier</td>
<td>03</td>
<td>01</td>
</tr>
<tr>
<td>Bradford</td>
<td>28</td>
<td>02</td>
<td>Desoto</td>
<td>04</td>
<td>01</td>
</tr>
<tr>
<td>Broward</td>
<td>76</td>
<td>05</td>
<td>Glades</td>
<td>05</td>
<td>01</td>
</tr>
<tr>
<td>Broward</td>
<td>86</td>
<td>04</td>
<td>Hardee</td>
<td>06</td>
<td>01</td>
</tr>
<tr>
<td>Calhoun</td>
<td>47</td>
<td>03</td>
<td>Hendry</td>
<td>07</td>
<td>01</td>
</tr>
<tr>
<td>Charlotte</td>
<td>01</td>
<td>01</td>
<td>Hernando</td>
<td>08</td>
<td>07</td>
</tr>
<tr>
<td>Citrus</td>
<td>02</td>
<td>07</td>
<td>Highlands</td>
<td>09</td>
<td>01</td>
</tr>
<tr>
<td>Clay</td>
<td>71</td>
<td>02</td>
<td>Hillsborough</td>
<td>10</td>
<td>07</td>
</tr>
<tr>
<td>Collier</td>
<td>03</td>
<td>01</td>
<td>Lake</td>
<td>11</td>
<td>05</td>
</tr>
<tr>
<td>Columbia</td>
<td>29</td>
<td>02</td>
<td>Lee</td>
<td>12</td>
<td>01</td>
</tr>
<tr>
<td>Desoto</td>
<td>04</td>
<td>01</td>
<td>Manatee</td>
<td>13</td>
<td>01</td>
</tr>
<tr>
<td>Dixie</td>
<td>30</td>
<td>02</td>
<td>Pasco</td>
<td>14</td>
<td>07</td>
</tr>
<tr>
<td>Duval</td>
<td>72</td>
<td>02</td>
<td>Pinellas</td>
<td>15</td>
<td>07</td>
</tr>
<tr>
<td>Escambia</td>
<td>48</td>
<td>03</td>
<td>Polk</td>
<td>16</td>
<td>01</td>
</tr>
<tr>
<td>Flagler</td>
<td>73</td>
<td>05</td>
<td>Sarasota</td>
<td>17</td>
<td>01</td>
</tr>
<tr>
<td>Franklin</td>
<td>49</td>
<td>03</td>
<td>Sumter</td>
<td>18</td>
<td>05</td>
</tr>
<tr>
<td>Gadsden</td>
<td>50</td>
<td>03</td>
<td>Alachua</td>
<td>26</td>
<td>02</td>
</tr>
<tr>
<td>Gilchrist</td>
<td>31</td>
<td>02</td>
<td>Baker</td>
<td>27</td>
<td>02</td>
</tr>
<tr>
<td>Glades</td>
<td>05</td>
<td>01</td>
<td>Bradford</td>
<td>28</td>
<td>02</td>
</tr>
<tr>
<td>Gulf</td>
<td>51</td>
<td>03</td>
<td>Columbia</td>
<td>29</td>
<td>02</td>
</tr>
<tr>
<td>Hamilton</td>
<td>32</td>
<td>02</td>
<td>Dixie</td>
<td>30</td>
<td>02</td>
</tr>
<tr>
<td>Hardee</td>
<td>06</td>
<td>01</td>
<td>Gilchrist</td>
<td>31</td>
<td>02</td>
</tr>
<tr>
<td>Hendry</td>
<td>07</td>
<td>01</td>
<td>Hamilton</td>
<td>32</td>
<td>02</td>
</tr>
<tr>
<td>Hernando</td>
<td>08</td>
<td>07</td>
<td>Lafayette</td>
<td>33</td>
<td>02</td>
</tr>
<tr>
<td>Highlands</td>
<td>09</td>
<td>01</td>
<td>Levy</td>
<td>34</td>
<td>02</td>
</tr>
<tr>
<td>Hillsborough</td>
<td>10</td>
<td>07</td>
<td>Madison</td>
<td>35</td>
<td>02</td>
</tr>
<tr>
<td>Holmes</td>
<td>52</td>
<td>03</td>
<td>Marion</td>
<td>36</td>
<td>05</td>
</tr>
<tr>
<td>Indian River</td>
<td>88</td>
<td>04</td>
<td>Suwannee</td>
<td>37</td>
<td>02</td>
</tr>
<tr>
<td>Jackson</td>
<td>53</td>
<td>03</td>
<td>Taylor</td>
<td>38</td>
<td>02</td>
</tr>
<tr>
<td>Jefferson</td>
<td>54</td>
<td>03</td>
<td>Union</td>
<td>39</td>
<td>02</td>
</tr>
<tr>
<td>Lafayette</td>
<td>33</td>
<td>02</td>
<td>Bay</td>
<td>40</td>
<td>03</td>
</tr>
<tr>
<td>Lake</td>
<td>11</td>
<td>05</td>
<td>Bay</td>
<td>41</td>
<td>03</td>
</tr>
<tr>
<td>Lee</td>
<td>12</td>
<td>01</td>
<td>Calhoun</td>
<td>47</td>
<td>03</td>
</tr>
<tr>
<td>Leon</td>
<td>55</td>
<td>03</td>
<td>Escambia</td>
<td>48</td>
<td>03</td>
</tr>
<tr>
<td>Levy</td>
<td>34</td>
<td>02</td>
<td>Franklin</td>
<td>49</td>
<td>03</td>
</tr>
<tr>
<td>Liberty</td>
<td>56</td>
<td>03</td>
<td>Gadsden</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>Madison</td>
<td>35</td>
<td>02</td>
<td>Gulf</td>
<td>51</td>
<td>03</td>
</tr>
<tr>
<td>Manatee</td>
<td>13</td>
<td>01</td>
<td>Holmes</td>
<td>52</td>
<td>03</td>
</tr>
<tr>
<td>Marion</td>
<td>36</td>
<td>05</td>
<td>Jackson</td>
<td>53</td>
<td>03</td>
</tr>
<tr>
<td>Martin</td>
<td>89</td>
<td>04</td>
<td>Jefferson</td>
<td>54</td>
<td>03</td>
</tr>
<tr>
<td>Miami-Dade</td>
<td>87</td>
<td>06</td>
<td>Levy</td>
<td>55</td>
<td>03</td>
</tr>
<tr>
<td>Monroe</td>
<td>90</td>
<td>06</td>
<td>Liberty</td>
<td>56</td>
<td>03</td>
</tr>
<tr>
<td>Nassau</td>
<td>74</td>
<td>02</td>
<td>Liberty</td>
<td>57</td>
<td>03</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>57</td>
<td>03</td>
<td>Santa Rosa</td>
<td>58</td>
<td>03</td>
</tr>
<tr>
<td>Okaloosa</td>
<td>91</td>
<td>01</td>
<td>Wakulla</td>
<td>59</td>
<td>03</td>
</tr>
<tr>
<td>Orange</td>
<td>75</td>
<td>05</td>
<td>Walton</td>
<td>60</td>
<td>03</td>
</tr>
<tr>
<td>Osceola</td>
<td>92</td>
<td>05</td>
<td>Washington</td>
<td>61</td>
<td>05</td>
</tr>
<tr>
<td>Palm Beach</td>
<td>93</td>
<td>04</td>
<td>Brevard</td>
<td>70</td>
<td>05</td>
</tr>
<tr>
<td>Pasco</td>
<td>14</td>
<td>07</td>
<td>Clay</td>
<td>71</td>
<td>02</td>
</tr>
<tr>
<td>Pinellas</td>
<td>15</td>
<td>07</td>
<td>Duval</td>
<td>72</td>
<td>02</td>
</tr>
<tr>
<td>Polk</td>
<td>16</td>
<td>01</td>
<td>Flagler</td>
<td>73</td>
<td>05</td>
</tr>
<tr>
<td>Putnam</td>
<td>76</td>
<td>02</td>
<td>Nassau</td>
<td>74</td>
<td>02</td>
</tr>
<tr>
<td>Raton</td>
<td>58</td>
<td>03</td>
<td>Orange</td>
<td>75</td>
<td>05</td>
</tr>
<tr>
<td>Sarasota</td>
<td>17</td>
<td>01</td>
<td>Putnam</td>
<td>76</td>
<td>02</td>
</tr>
<tr>
<td>Seminole</td>
<td>77</td>
<td>05</td>
<td>Seminole</td>
<td>77</td>
<td>05</td>
</tr>
<tr>
<td>St. Johns</td>
<td>78</td>
<td>02</td>
<td>St. Johns</td>
<td>78</td>
<td>02</td>
</tr>
<tr>
<td>St. Lucie</td>
<td>94</td>
<td>04</td>
<td>St. Lucie</td>
<td>94</td>
<td>04</td>
</tr>
<tr>
<td>Sumter</td>
<td>18</td>
<td>05</td>
<td>Miami-Dade</td>
<td>87</td>
<td>06</td>
</tr>
<tr>
<td>Suwannee</td>
<td>37</td>
<td>02</td>
<td>Indian River</td>
<td>88</td>
<td>04</td>
</tr>
<tr>
<td>Taylor</td>
<td>38</td>
<td>02</td>
<td>Monroe</td>
<td>90</td>
<td>06</td>
</tr>
<tr>
<td>Union</td>
<td>39</td>
<td>02</td>
<td>Okaloosa</td>
<td>91</td>
<td>01</td>
</tr>
<tr>
<td>Votusia</td>
<td>79</td>
<td>05</td>
<td>Osceola</td>
<td>92</td>
<td>05</td>
</tr>
<tr>
<td>Wakulla</td>
<td>59</td>
<td>03</td>
<td>Palm Beach</td>
<td>93</td>
<td>04</td>
</tr>
<tr>
<td>Washington</td>
<td>61</td>
<td>03</td>
<td>St. Lucie</td>
<td>94</td>
<td>04</td>
</tr>
</tbody>
</table>